Navy Use of Laser Scanning Already Showing Big Savings

img.png

A $50,000 investment in laser scanning equipment saved the Navy nearly $2 million during the planning effort for USS George Washington‘s (CVN-73) refueling and complex overhaul. A small team of engineers with a LIDAR system did the work of the usual 20-person team, inspecting the nooks and crannies of the carrier to inform the overhaul plans.

Now the Navy is looking to leverage that win and expand its use of laser scanners to not only cut down costs for aircraft carrier maintenance planning and execution but also tie into virtual reality trainers and other cutting-edge technologies.

In the case of the George Washington RCOH, a team of two or three engineers from Newport News Shipbuilding flew out to the forward-deployed carrier in Japan with a LIDAR scanner atop a tripod. As the tool slowly spins around it gathers millions of data points depicting how far away objects are from the scanner. The resulting 3D point cloud shows the precise location of items in the room – not where a server rack was supposed to be according to the blueprints, for example, but where it actually is.

Capt. John Markowicz, the in-service carrier program manager, told USNI News in an interview that the $1.8-million savings from that one ship check effort was about 15 percent of the total cost of that portion of the RCOH planning, and that his office was already employing the laser scanning technology ahead of the next RCOH for USS John C. Stennis (CVN-74). He said it was too early to guess a percent savings the laser scanning will yield this time around, but that it would likely be on par or better than with George Washington because Newport News Shipbuilding has continued to invest in the laser scanners and learning how to best leverage them.

Maintenance mockups and interference detection

Once those point cloud models are created, the Navy and Newport News have already found several uses during the RCOH and other carrier maintenance planning and execution phases.

First, for the actual planning, the point cloud models can offer some spatial perspective that flat blueprints can’t, as well as an updated “as-is” assessment of the space instead of the “as-designed” view the blueprints contain.

Mark Bilinski, a scientist at the Space and Naval Warfare Systems Center Pacific and its Battlespace Exploitation of Mixed Reality (BEMR) Lab, and his team are working on laser scanning technology and ways to leverage the 3D point cloud product. He showed off some of the technologies to USNI News during the U.S. Naval Institute and AFCEA’s WEST 2018 conference in San Diego in February. During a panel presentation at WEST, he said that sometimes the 3D scans just show discrepancies between where an item was supposed to be installed versus where it actually was installed. However, he ran into a case where the blueprints depicted an escape hatch of a certain size, but it was larger in reality; in that case, a planner might have thought there was room to install something nearby, when in reality putting the equipment there would actually partially block the hatch and cause a safety issue. In another case, the blueprints showed a hatch as being much larger than it actually is, and so the planner might have thought the space was unusable.

“That’s an opportunity cost because that might be some space that you could use for an install that you don’t think is available to you,” Bilinski said.

Once the planning is done and execution is set to begin, Markowicz said the 3D models, unlike 2D blueprints, can help identify interferences and obstructions, help find the best route down narrow passageways for bringing in bulky equipment to install, aid in laying in pipes and wires and more.

“That is valuable, it cuts down time in the shipyard,” which ultimately cuts down cost and allows the next carrier to come in for maintenance quicker.

Norfolk Naval Shipyard and Puget Sound Naval Shipyard and Intermediate Maintenance Facility are beginning to embrace this technology, which could spread to the other two public shipyards to support submarine maintenance activities too, and Newport News Shipbuilding is “all in” on the private sector side, he said.

Markowicz noted that taking the scans and making mockups in a 3D digital environment can not only save time on major efforts like finding the best routing for piping, but can also help with little things – for instance, there was a case of trying to install a laptop in a phone booth area, but it turned out that the laptop couldn’t open all the way without hitting the phone.

“We stumble upon these things sometimes a little late in the design process, or actually the install process. It’s not as efficient as it can be,” he said.

Every time a maintenance or modernization activity takes place, the scan would become slightly outdated, but Markowicz said the idea would be to rescan periodically and maintain records of all the scans as “selected records” that accompany the 2D drawings for the Nimitz class today.

“Once we have this digitally, I think that’s pretty useful. We can share it with multiple activities and have the documentation for future use and future availability planning,” he said.

Bilinski also noted the ways laser scans could help during a major maintenance period, when multiple program offices are trying to get their own equipment in and don’t always have a great way to coordinate.

In many availabilities, Bilinski said, someone goes to install a piece of equipment in a space, only to find that that space is taken. Instead, he will just take the next closest space that meets his need. Then the next person comes in to use that space and finds that it was just taken, causing a cascading effect. If everyone involved in the maintenance period were working off a shared digital plan that could be updated in real time as systems were installed, conflicts could be identified sooner and plans could be rearranged as needed without any on-ship confusion.

“If you have that collaborative environment where everyone is planning off of the scan data, the installer can see not only that this space is physically available, but hey, it’s also available in the planning environment; no one is planning to put anything there. Or, maybe someone is planning to put something there but you’ve got to put your equipment somewhere, so you put it there, but you at least know who to notify so that we can start fixing this problem earlier than discovering it when the next program office shows up to install their equipment,” he said.

Leverage laser scan technology

“I think across the board we will save money, and in that way the leadership is behind it if it helps us be more efficient,” he said. Back when the Navy and Newport News first did the George Washington ship check, then-Navy acquisition chief Sean Stackley’s message to Markowicz was, “I absolutely needed to make it my mission to leverage new technologies and be more efficient in the repair business,” the captain said, and he believes this is a prime example of how to do that.

To be successful enterprise-wide, he said, “I think the real key is setting the standards, which will provide a framework where contractors and Navy can plug into. To get there, we need to provide technical leadership, host conferences … flush out all the issues. At least create a standard so that we can contract and have deliverables. One software package or one laser scanner, I don’t think we need to be that proscriptive. I think we set a standard for industry, like an ISO standard, and people will come around to it.”

He likened the point cloud image to a PDF that could be opened on a Mac or a PC and is readily sharable among users, and said it would be important that, regardless of what scanner is used, the output has these qualities too. He suggested that some scans would need to be precise while others could forsake precision for speed if the user just needed a general idea of how a room is laid out, and all those types of issues would eventually become written out and standardized.

Source: USNI News | By: Megan Eckstein